If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2-192=0
a = 40; b = 0; c = -192;
Δ = b2-4ac
Δ = 02-4·40·(-192)
Δ = 30720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30720}=\sqrt{1024*30}=\sqrt{1024}*\sqrt{30}=32\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{30}}{2*40}=\frac{0-32\sqrt{30}}{80} =-\frac{32\sqrt{30}}{80} =-\frac{2\sqrt{30}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{30}}{2*40}=\frac{0+32\sqrt{30}}{80} =\frac{32\sqrt{30}}{80} =\frac{2\sqrt{30}}{5} $
| (2x+30)-(3x+15)=4x | | 5z+6=44 | | 3x+6=2(2x+4) | | 125^1-x=25^2x-2 | | X=-16-2x(-6) | | (2x+30)+(3x+15)=4x | | 9b-39=2b+38 | | 84=4(4p+1)+4p | | 2x-2+54=180 | | 1/4c=55 | | 8n+5=51 | | 7x+x-9=8x | | 9x+22=2x-27 | | x+2x=20+25 | | –3x^2+60=3x | | -1=-3-(k-21) | | 2(2x+10)=3x-7 | | -6(u+8)=9u-42 | | 6(2-6b)-3b=129 | | -4x+3=6x+93 | | 6x-19=x+16 | | 5v^2+20v+10=4v | | 17.42.1x+0.6=17.4 | | 4x–7/4x+14=7/4(x+8)+1/2x | | 2(2x+10)=2x-7 | | 112=8(-6+4p) | | 2x+32+4x+134=180 | | 3c-4=104 | | -6(x+2)-8=1x-10-7x-10 | | 4x–74x+14=74(x+8)+12x | | 40+2x+62=55+147 | | 5x^2=8x+1 |